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ABSTRACT

— 

The rn—chromatic number Xm(G) of a graph G = (V,E)
1~~ is the least integer k such that there exists a mapping

f:V {S C {l,2,...,k}:ISl= m} having the property that

f(u)flf(v) = $ whenever {u,v} c E. This is a generalization

of the standard notion of chromatic number and arises in

connection with mobile telephone frequency assignments.

Answering a question of Lovász, our first result shows that

for any m > 1 and any c > 0, there exists a graph G for which

• Xm+i(G)/Xm(G) > 2—c. This shows that the known bound of 2

for all m and G is essentially best possible . Our second

result shows that the least integer m0 for which Xm (G )/m 0 =

0

].im Xm (G)/m can be asymptotically as large as e1 1°
~~~

”2 t -

m-~~
for some n vertex graphs, though it can never exceed e~~

10
~~

)/’2.
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I. INTRODUCTION

• 
• The following generalization of the standard notion

• of graph coloring has been of recent interest [1,3,L~,6,7,8]. A

multicoloring of a graph G = (V,E) is a function f defined on

V whose values are sets (of “colors”) satisfying f(u)flf(v) =

whenever {u,v} c E. For positive integers k,m, a (k,m)—coloring

of G = (V,E) is a multicoloring f of G such that f f ( v )I  = m

for each v c V and f U f(v),f = k. The rn—chromatic number x (G)
vcV m

is the least integer k such that there exists a (k,rn)—coloring

of G. (This last definition differs from that of [6,7] by a

factor of m.) Notice that for m = 1 these definitions corres—

• pond to the usual graph coloring notions. The purpose of

this note is to resolve two questions about multicoloring con—

veyed to us by P. Erdös [2].

The first question deals with the relationship

between Xm(G) and Xm+l(~~ * It is not difficult to see that
S .- 

p.

Xm+i(0) .~~. 
Xm(0) + x1(0)  < 2*Xm(G) 

_ _ _ _ _

* I~~~~
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with equality possible in the right—hand inequality only

for m = 1. Lovász asked [2] whether, for each value of m ,

there exist graphs G such that Xm+i(G) > (2
~

•E:) X m ( G ) .  We

shall answer this question in the affirmative.

The graphs we shall use are defined as follows : for ~O5 i—

tive integers n > 2m, the graph G~ has vertex set consisting

of all zn—element subsets of {l,2,...,n} and has an edge between

twO such vertices exactly when their intersection is empty.

It is easy to see that < n merely by considering the

multicoloring provided by the definition of G~ arid , in fact,

it is proved in [7,8] that Xm(~~) 
= n. Thus, to answer the

question of Lovász, it suffices to prove the following theorem:

Theorem 1. For each m > 2, there exists a constant c such

that for all sufficiently large n

> 2n — c.

In order to prove Theorem 1, we require the following

lemma, which is an immediate consequence of a special case of
Theorem 3 in [5].

Lemma 1. For fixed in > 2 and n sufficiently large, there

ex ists a constant a0 such that the number of rn—element subsets

of {1,2,...,n} which can be chosen so that no two are disjoint

but there is no element common to all is at most a0n
m 2 . 

r 
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Proof of Theorem 1. Fix m. We merely need to show that ,

for all sufficiently large n,

Xm+i (0
~

) - X~÷i (G~;
1) > 2

and the result will follow by induction. So suppose we have

a (k,m+l)—coloring of G~ such that k = Xm+i (~
) , where n is

any integer sufficiently large that the conclus ion of Lemma 1

holds and such that(~~~)> ma0n
m_2

, where a0 is the constant

of Lemma 1. We first claim that there must be at least n+l

colors which each appear on more than a0n
m 2  vertices.

Suppose there are n or fewer colors which each appear

on more than a0n
m
~
2 vertices. By Lemma 1, each such color can

appear on at most (
~

) > a0n~~~ vertices since they must all

share a com m on element . Thus, since each of the (
~

) vertices
receives exactly m+l colors, we must have

(m+1) (
~) < n (~

) + (k_ n ) a 0nm 2

< m 
(~~~

) +  (k_n)a0n
m 2

or , rewriting,
1-

(
~

) < (k_n)a
0n

m 2

Since

~ i k Xm+l (°
~~ ) ~ X~ (a~) + x (~

)
< 2 Xm ( G~ ) = 2n



H
it follows that  we must have

(
~

) < a0n~~
1 -

However this is a contradiction , since n was chosen sufficiently

lar ge that (
~

) = 

~ 
(
~

) > ~~~. ~~~~~~~ = a 0nm_ l
, and the claim

follows.

Thus there are at least n+l colors which each appear

on more than a0n
m_2 

vertices . The set of vertices on which

any color i appears must form a collection of pairwise—inter—

secting rn—element subsets of {l,2,...,n } , by definition of G~~.

Thus , by Lemma 1, whenever color i appears on more than a0nm_ 2

vertices , all those vertices must contain some common element

e1. Since there are more than n such colors , we must have

e1 
= ej for some I and J. If we delete from G~ all the vertices

containing e1 = eja we obtain a copy of ~~~~ and a (k—2 ,m+l)—

coloring of it , since colors i and j have disappeared . Therefore

Xm+i (o~~~)< k-2 = X m+i (G~ ) - 2

and the theorem Is proved.P

The second question involves what we call the

ul t imate  multlchromatic number X (G) defined by

L i  *x (0) — inf x (0)/rn.
m m
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It is proved in [1,7] that the value of X*(G) is always achieved

for some finite m. One easy way to see this is to formulate

the problem of determining X *~ G) as a linear programming

problem . (as done in [ Li]): Let ~~~~~~~~~~~~ be an ordering

of the vertices of 0 and let S1, S2 , . . . ,S~ be an ordering of

the independent sets of 0. Define X jj  to be 1 whenever v1 c S~
and 0 otherwise. Then •the value of X *(G )  is given by

X *(G) = mm r~

subject to: rj  > 0 , 1 < j  <

xjjrj = l 3 1 1i~~~n.

One can show easily, using Hadamard ’s Theorem , that no basis

matrix for this problem can have determinant exceeding

and this is an upper bound on the value of m required .

This upper bound however seems ridiculously large .

Erd~s asked [2] (as did the authors, independently) whether

X*(G) could always be achieved for an in not exceeding the

number of vertices of 0. We answer this in the negatIve~,

constructing graphs for which extremely large values of m are

*necessary to achieve 
~ 
(0).

I.

I.
N

_ _
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Let C~ denote the graph which iz a cycle on p

•vertices. The join 01+02 of two graphs G1 and G2, having

disj oint vertex sets , consists of all edges and vertices In

the two given graphs along with all edges jo ining a vertex

from G1 to a Vertex from G2. We use the following two lemmas

in our construction :

Lemma 2. [1~,7] For all integers p > 1,

2 + (l/p).

Lemma 3. [7] For all graphs G1 and

X *(G 1+G 2 ) x~ (G 1) + X*(G2).

Let p1 denote the ~~~ prime and define the graph

0( i )  t o be C2~~ ÷1 + C2~~~1 f .  . •+  C
2

~~~~~~~~~1. The number of

vertices n of G ( i )  Is given by

r i = i + 2  ~~~~Pj

Applying Lemma s 2 and 3, we obtain

I

X*(G(i)) = 21 + (l /~~~)

Since Xm (G( i)) must alw,ays be an integer , it follows that the

least value of m for which X*(G(i)) = Xm (G(i))/in can be no less

that ~~ Pj 
(and In fact that value of m will work). Using

- j  3— 1

the Prime Number Theorem and expressing this lower bound in



:1’

terms of n , we obtain the asymptotic lower bound of

Thu s, though this is still quite far’ from the upper bound of

- 

~n/2 
= ~ (nlogn)/2

we see that extreme]~y large values of m can be required in

order to achieve X*(G).

3

I



_ _  _ _  ~~~~~ T •IITTITI 1~~~~T r T ~I~ ~~~~~

REFEJ~ENCES

[1] F. H. Clarke and R . E. Jamison , “Multicolorings ,

Measures and Games on araphs ” , Discrete M a t h . ,  14

• (1976) ,  2 141_245 .

[2] P. Erdös , personal communication.

[3] N. B. Garey and D . S. Johnson , “The Complexity of

Near—Optimal Graph Coloring ” , J. ACM 23 (1976) ,  143 ..J49.

[4] E. N.  Gilbert , “Mobile Radio Frequency Assignments ” ,

unpublished technical memorandum , 1972.

[5] A. J. W. Hilton and E. C. Milner , “Some Intersection

Theorems for Systems of Finite Sets ” , Quart . J. of

Math. (Oxford second series), 18 (1967) ,  No. 72 ,

369—3 84 .

[6] A. J. W. Hilton . R. Rado, and S. H. Scott , “A (<5)—

color theorem for Planar Graphs, Bull. London Math.

Soc. 5 (1973) ,  302—306.

[7] S. H. Scott , Multiple Node Colorings of Finite Graphs ,

Ph.D. thesis, Dept .  of Mathemat ics , University of

Reading (England), 1975.

[8] S. Stahl, “n—Tuple Colorings and Associated Graphs” ,

J. Combinatorial Theory—Series B , 20 ( 1 9 7 6) ,  185—203 .

I- • •


